1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166 | # Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""
This script demonstrates different dexterous hands.
.. code-block:: bash
# Usage
./isaaclab.sh -p source/standalone/demos/hands.py
"""
"""Launch Isaac Sim Simulator first."""
import argparse
from omni.isaac.lab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="This script demonstrates different dexterous hands.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli = parser.parse_args()
# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import numpy as np
import torch
import omni.isaac.core.utils.prims as prim_utils
import omni.isaac.lab.sim as sim_utils
from omni.isaac.lab.assets import Articulation
##
# Pre-defined configs
##
from omni.isaac.lab_assets.allegro import ALLEGRO_HAND_CFG # isort:skip
from omni.isaac.lab_assets.shadow_hand import SHADOW_HAND_CFG # isort:skip
def define_origins(num_origins: int, spacing: float) -> list[list[float]]:
"""Defines the origins of the the scene."""
# create tensor based on number of environments
env_origins = torch.zeros(num_origins, 3)
# create a grid of origins
num_cols = np.floor(np.sqrt(num_origins))
num_rows = np.ceil(num_origins / num_cols)
xx, yy = torch.meshgrid(torch.arange(num_rows), torch.arange(num_cols), indexing="xy")
env_origins[:, 0] = spacing * xx.flatten()[:num_origins] - spacing * (num_rows - 1) / 2
env_origins[:, 1] = spacing * yy.flatten()[:num_origins] - spacing * (num_cols - 1) / 2
env_origins[:, 2] = 0.0
# return the origins
return env_origins.tolist()
def design_scene() -> tuple[dict, list[list[float]]]:
"""Designs the scene."""
# Ground-plane
cfg = sim_utils.GroundPlaneCfg()
cfg.func("/World/defaultGroundPlane", cfg)
# Lights
cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75))
cfg.func("/World/Light", cfg)
# Create separate groups called "Origin1", "Origin2", "Origin3"
# Each group will have a mount and a robot on top of it
origins = define_origins(num_origins=2, spacing=0.5)
# Origin 1 with Allegro Hand
prim_utils.create_prim("/World/Origin1", "Xform", translation=origins[0])
# -- Robot
allegro = Articulation(ALLEGRO_HAND_CFG.replace(prim_path="/World/Origin1/Robot"))
# Origin 2 with Shadow Hand
prim_utils.create_prim("/World/Origin2", "Xform", translation=origins[1])
# -- Robot
shadow_hand = Articulation(SHADOW_HAND_CFG.replace(prim_path="/World/Origin2/Robot"))
# return the scene information
scene_entities = {
"allegro": allegro,
"shadow_hand": shadow_hand,
}
return scene_entities, origins
def run_simulator(sim: sim_utils.SimulationContext, entities: dict[str, Articulation], origins: torch.Tensor):
"""Runs the simulation loop."""
# Define simulation stepping
sim_dt = sim.get_physics_dt()
sim_time = 0.0
count = 0
# Start with hand open
grasp_mode = 0
# Simulate physics
while simulation_app.is_running():
# reset
if count % 1000 == 0:
# reset counters
sim_time = 0.0
count = 0
# reset robots
for index, robot in enumerate(entities.values()):
# root state
root_state = robot.data.default_root_state.clone()
root_state[:, :3] += origins[index]
robot.write_root_state_to_sim(root_state)
# joint state
joint_pos, joint_vel = robot.data.default_joint_pos.clone(), robot.data.default_joint_vel.clone()
robot.write_joint_state_to_sim(joint_pos, joint_vel)
# reset the internal state
robot.reset()
print("[INFO]: Resetting robots state...")
# toggle grasp mode
if count % 100 == 0:
grasp_mode = 1 - grasp_mode
# apply default actions to the hands robots
for robot in entities.values():
# generate joint positions
joint_pos_target = robot.data.soft_joint_pos_limits[..., grasp_mode]
# apply action to the robot
robot.set_joint_position_target(joint_pos_target)
# write data to sim
robot.write_data_to_sim()
# perform step
sim.step()
# update sim-time
sim_time += sim_dt
count += 1
# update buffers
for robot in entities.values():
robot.update(sim_dt)
def main():
"""Main function."""
# Initialize the simulation context
sim = sim_utils.SimulationContext(sim_utils.SimulationCfg(dt=0.01))
# Set main camera
sim.set_camera_view(eye=[0.0, -0.5, 1.5], target=[0.0, -0.2, 0.5])
# design scene
scene_entities, scene_origins = design_scene()
scene_origins = torch.tensor(scene_origins, device=sim.device)
# Play the simulator
sim.reset()
# Now we are ready!
print("[INFO]: Setup complete...")
# Run the simulator
run_simulator(sim, scene_entities, scene_origins)
if __name__ == "__main__":
# run the main execution
main()
# close sim app
simulation_app.close()
|