コンテンツにスキップ

handsサンプル

Preview

起動コマンド

1
./isaaclab.bat -p source/standalone/demos/hands.py

ソースコード(hands.py)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

"""
This script demonstrates different dexterous hands.

.. code-block:: bash

    # Usage
    ./isaaclab.sh -p source/standalone/demos/hands.py

"""

"""Launch Isaac Sim Simulator first."""

import argparse

from omni.isaac.lab.app import AppLauncher

# add argparse arguments
parser = argparse.ArgumentParser(description="This script demonstrates different dexterous hands.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli = parser.parse_args()

# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app

"""Rest everything follows."""

import numpy as np
import torch

import omni.isaac.core.utils.prims as prim_utils

import omni.isaac.lab.sim as sim_utils
from omni.isaac.lab.assets import Articulation

##
# Pre-defined configs
##
from omni.isaac.lab_assets.allegro import ALLEGRO_HAND_CFG  # isort:skip
from omni.isaac.lab_assets.shadow_hand import SHADOW_HAND_CFG  # isort:skip


def define_origins(num_origins: int, spacing: float) -> list[list[float]]:
    """Defines the origins of the the scene."""
    # create tensor based on number of environments
    env_origins = torch.zeros(num_origins, 3)
    # create a grid of origins
    num_cols = np.floor(np.sqrt(num_origins))
    num_rows = np.ceil(num_origins / num_cols)
    xx, yy = torch.meshgrid(torch.arange(num_rows), torch.arange(num_cols), indexing="xy")
    env_origins[:, 0] = spacing * xx.flatten()[:num_origins] - spacing * (num_rows - 1) / 2
    env_origins[:, 1] = spacing * yy.flatten()[:num_origins] - spacing * (num_cols - 1) / 2
    env_origins[:, 2] = 0.0
    # return the origins
    return env_origins.tolist()


def design_scene() -> tuple[dict, list[list[float]]]:
    """Designs the scene."""
    # Ground-plane
    cfg = sim_utils.GroundPlaneCfg()
    cfg.func("/World/defaultGroundPlane", cfg)
    # Lights
    cfg = sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75))
    cfg.func("/World/Light", cfg)

    # Create separate groups called "Origin1", "Origin2", "Origin3"
    # Each group will have a mount and a robot on top of it
    origins = define_origins(num_origins=2, spacing=0.5)

    # Origin 1 with Allegro Hand
    prim_utils.create_prim("/World/Origin1", "Xform", translation=origins[0])
    # -- Robot
    allegro = Articulation(ALLEGRO_HAND_CFG.replace(prim_path="/World/Origin1/Robot"))

    # Origin 2 with Shadow Hand
    prim_utils.create_prim("/World/Origin2", "Xform", translation=origins[1])
    # -- Robot
    shadow_hand = Articulation(SHADOW_HAND_CFG.replace(prim_path="/World/Origin2/Robot"))

    # return the scene information
    scene_entities = {
        "allegro": allegro,
        "shadow_hand": shadow_hand,
    }
    return scene_entities, origins


def run_simulator(sim: sim_utils.SimulationContext, entities: dict[str, Articulation], origins: torch.Tensor):
    """Runs the simulation loop."""
    # Define simulation stepping
    sim_dt = sim.get_physics_dt()
    sim_time = 0.0
    count = 0
    # Start with hand open
    grasp_mode = 0
    # Simulate physics
    while simulation_app.is_running():
        # reset
        if count % 1000 == 0:
            # reset counters
            sim_time = 0.0
            count = 0
            # reset robots
            for index, robot in enumerate(entities.values()):
                # root state
                root_state = robot.data.default_root_state.clone()
                root_state[:, :3] += origins[index]
                robot.write_root_state_to_sim(root_state)
                # joint state
                joint_pos, joint_vel = robot.data.default_joint_pos.clone(), robot.data.default_joint_vel.clone()
                robot.write_joint_state_to_sim(joint_pos, joint_vel)
                # reset the internal state
                robot.reset()
            print("[INFO]: Resetting robots state...")
        # toggle grasp mode
        if count % 100 == 0:
            grasp_mode = 1 - grasp_mode
        # apply default actions to the hands robots
        for robot in entities.values():
            # generate joint positions
            joint_pos_target = robot.data.soft_joint_pos_limits[..., grasp_mode]
            # apply action to the robot
            robot.set_joint_position_target(joint_pos_target)
            # write data to sim
            robot.write_data_to_sim()
        # perform step
        sim.step()
        # update sim-time
        sim_time += sim_dt
        count += 1
        # update buffers
        for robot in entities.values():
            robot.update(sim_dt)


def main():
    """Main function."""

    # Initialize the simulation context
    sim = sim_utils.SimulationContext(sim_utils.SimulationCfg(dt=0.01))
    # Set main camera
    sim.set_camera_view(eye=[0.0, -0.5, 1.5], target=[0.0, -0.2, 0.5])
    # design scene
    scene_entities, scene_origins = design_scene()
    scene_origins = torch.tensor(scene_origins, device=sim.device)
    # Play the simulator
    sim.reset()
    # Now we are ready!
    print("[INFO]: Setup complete...")
    # Run the simulator
    run_simulator(sim, scene_entities, scene_origins)


if __name__ == "__main__":
    # run the main execution
    main()
    # close sim app
    simulation_app.close()

Config関連