コンテンツにスキップ

camerasサンプル

Preview

起動コマンド

1
./isaaclab.bat -p source/standalone/demos/cameras.py

ソースコード(cameras.py)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause

"""
This script demonstrates the different camera sensors that can be attached to a robot.

.. code-block:: bash

    # Usage
    ./isaaclab.sh -p source/standalone/demos/cameras.py --disable_fabric

    # Usage in headless mode
    ./isaaclab.sh -p source/standalone/demos/cameras.py --headless --enable_cameras --disable_fabric

"""

"""Launch Isaac Sim Simulator first."""

import argparse

from omni.isaac.lab.app import AppLauncher

# add argparse arguments
parser = argparse.ArgumentParser(description="This script demonstrates the different camera sensor implementations.")
parser.add_argument("--num_envs", type=int, default=4, help="Number of environments to spawn.")
parser.add_argument("--disable_fabric", action="store_true", help="Disable Fabric API and use USD instead.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli = parser.parse_args()

# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app

"""Rest everything follows."""

import matplotlib.pyplot as plt
import numpy as np
import os
import torch

import omni.isaac.lab.sim as sim_utils
from omni.isaac.lab.assets import ArticulationCfg, AssetBaseCfg
from omni.isaac.lab.scene import InteractiveScene, InteractiveSceneCfg
from omni.isaac.lab.sensors import CameraCfg, RayCasterCameraCfg, TiledCameraCfg
from omni.isaac.lab.sensors.ray_caster import patterns
from omni.isaac.lab.terrains import TerrainImporterCfg
from omni.isaac.lab.utils import configclass

##
# Pre-defined configs
##
from omni.isaac.lab.terrains.config.rough import ROUGH_TERRAINS_CFG  # isort:skip
from omni.isaac.lab_assets.anymal import ANYMAL_C_CFG  # isort: skip


@configclass
class SensorsSceneCfg(InteractiveSceneCfg):
    """Design the scene with sensors on the robot."""

    # ground plane
    ground = TerrainImporterCfg(
        prim_path="/World/ground",
        max_init_terrain_level=None,
        terrain_type="generator",
        terrain_generator=ROUGH_TERRAINS_CFG.replace(color_scheme="random"),
        visual_material=None,
        debug_vis=False,
    )

    # lights
    dome_light = AssetBaseCfg(
        prim_path="/World/Light", spawn=sim_utils.DomeLightCfg(intensity=2000.0, color=(0.75, 0.75, 0.75))
    )

    # robot
    robot: ArticulationCfg = ANYMAL_C_CFG.replace(prim_path="{ENV_REGEX_NS}/Robot")

    # sensors
    camera = CameraCfg(
        prim_path="{ENV_REGEX_NS}/Robot/base/front_cam",
        update_period=0.1,
        height=480,
        width=640,
        data_types=["rgb", "distance_to_image_plane"],
        spawn=sim_utils.PinholeCameraCfg(
            focal_length=24.0, focus_distance=400.0, horizontal_aperture=20.955, clipping_range=(0.1, 1.0e5)
        ),
        offset=CameraCfg.OffsetCfg(pos=(0.510, 0.0, 0.015), rot=(0.5, -0.5, 0.5, -0.5), convention="ros"),
    )
    tiled_camera = TiledCameraCfg(
        prim_path="{ENV_REGEX_NS}/Robot/base/front_cam",
        update_period=0.1,
        height=480,
        width=640,
        data_types=["rgb", "distance_to_camera"],
        spawn=None,  # the camera is already spawned in the scene
        offset=TiledCameraCfg.OffsetCfg(pos=(0.510, 0.0, 0.015), rot=(0.5, -0.5, 0.5, -0.5), convention="ros"),
    )
    raycast_camera = RayCasterCameraCfg(
        prim_path="{ENV_REGEX_NS}/Robot/base",
        mesh_prim_paths=["/World/ground"],
        update_period=0.1,
        offset=RayCasterCameraCfg.OffsetCfg(pos=(0.510, 0.0, 0.015), rot=(0.5, -0.5, 0.5, -0.5), convention="ros"),
        data_types=["distance_to_image_plane", "normals"],
        pattern_cfg=patterns.PinholeCameraPatternCfg(
            focal_length=24.0,
            horizontal_aperture=20.955,
            height=480,
            width=640,
        ),
    )


def save_images_grid(
    images: list[torch.Tensor],
    cmap: str | None = None,
    nrow: int = 1,
    subtitles: list[str] | None = None,
    title: str | None = None,
    filename: str | None = None,
):
    """Save images in a grid with optional subtitles and title.

    Args:
        images: A list of images to be plotted. Shape of each image should be (H, W, C).
        cmap: Colormap to be used for plotting. Defaults to None, in which case the default colormap is used.
        nrows: Number of rows in the grid. Defaults to 1.
        subtitles: A list of subtitles for each image. Defaults to None, in which case no subtitles are shown.
        title: Title of the grid. Defaults to None, in which case no title is shown.
        filename: Path to save the figure. Defaults to None, in which case the figure is not saved.
    """
    # show images in a grid
    n_images = len(images)
    ncol = int(np.ceil(n_images / nrow))

    fig, axes = plt.subplots(nrow, ncol, figsize=(ncol * 2, nrow * 2))
    axes = axes.flatten()

    # plot images
    for idx, (img, ax) in enumerate(zip(images, axes)):
        img = img.detach().cpu().numpy()
        ax.imshow(img, cmap=cmap)
        ax.axis("off")
        if subtitles:
            ax.set_title(subtitles[idx])
    # remove extra axes if any
    for ax in axes[n_images:]:
        fig.delaxes(ax)
    # set title
    if title:
        plt.suptitle(title)

    # adjust layout to fit the title
    plt.tight_layout()
    # save the figure
    if filename:
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        plt.savefig(filename)
    # close the figure
    plt.close()


def run_simulator(sim: sim_utils.SimulationContext, scene: InteractiveScene):
    """Run the simulator."""
    # Define simulation stepping
    sim_dt = sim.get_physics_dt()
    sim_time = 0.0
    count = 0

    # Create output directory to save images
    output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
    os.makedirs(output_dir, exist_ok=True)

    # Simulate physics
    while simulation_app.is_running():
        # Reset
        if count % 500 == 0:
            # reset counter
            count = 0
            # reset the scene entities
            # root state
            # we offset the root state by the origin since the states are written in simulation world frame
            # if this is not done, then the robots will be spawned at the (0, 0, 0) of the simulation world
            root_state = scene["robot"].data.default_root_state.clone()
            root_state[:, :3] += scene.env_origins
            scene["robot"].write_root_state_to_sim(root_state)
            # set joint positions with some noise
            joint_pos, joint_vel = (
                scene["robot"].data.default_joint_pos.clone(),
                scene["robot"].data.default_joint_vel.clone(),
            )
            joint_pos += torch.rand_like(joint_pos) * 0.1
            scene["robot"].write_joint_state_to_sim(joint_pos, joint_vel)
            # clear internal buffers
            scene.reset()
            print("[INFO]: Resetting robot state...")
        # Apply default actions to the robot
        # -- generate actions/commands
        targets = scene["robot"].data.default_joint_pos
        # -- apply action to the robot
        scene["robot"].set_joint_position_target(targets)
        # -- write data to sim
        scene.write_data_to_sim()
        # perform step
        sim.step()
        # update sim-time
        sim_time += sim_dt
        count += 1
        # update buffers
        scene.update(sim_dt)

        # print information from the sensors
        print("-------------------------------")
        print(scene["camera"])
        print("Received shape of rgb   image: ", scene["camera"].data.output["rgb"].shape)
        print("Received shape of depth image: ", scene["camera"].data.output["distance_to_image_plane"].shape)
        print("-------------------------------")
        print(scene["tiled_camera"])
        print("Received shape of rgb   image: ", scene["tiled_camera"].data.output["rgb"].shape)
        print("Received shape of depth image: ", scene["tiled_camera"].data.output["distance_to_camera"].shape)
        print("-------------------------------")
        print(scene["raycast_camera"])
        print("Received shape of depth: ", scene["raycast_camera"].data.output["distance_to_image_plane"].shape)
        print("Received shape of normals: ", scene["raycast_camera"].data.output["normals"].shape)

        # save every 10th image (for visualization purposes only)
        # note: saving images will slow down the simulation
        if count % 10 == 0:
            # compare generated RGB images across different cameras
            rgb_images = [scene["camera"].data.output["rgb"][0, ..., :3], scene["tiled_camera"].data.output["rgb"][0]]
            save_images_grid(
                rgb_images,
                subtitles=["Camera", "TiledCamera"],
                title="RGB Image: Cam0",
                filename=os.path.join(output_dir, "rgb", f"{count:04d}.jpg"),
            )

            # compare generated Depth images across different cameras
            depth_images = [
                scene["camera"].data.output["distance_to_image_plane"][0],
                scene["tiled_camera"].data.output["distance_to_camera"][0, ..., 0],
                scene["raycast_camera"].data.output["distance_to_image_plane"][0],
            ]
            save_images_grid(
                depth_images,
                cmap="turbo",
                subtitles=["Camera", "TiledCamera", "RaycasterCamera"],
                title="Depth Image: Cam0",
                filename=os.path.join(output_dir, "distance_to_camera", f"{count:04d}.jpg"),
            )

            # save all tiled RGB images
            tiled_images = scene["tiled_camera"].data.output["rgb"]
            save_images_grid(
                tiled_images,
                subtitles=[f"Cam{i}" for i in range(tiled_images.shape[0])],
                title="Tiled RGB Image",
                filename=os.path.join(output_dir, "tiled_rgb", f"{count:04d}.jpg"),
            )

            # save all camera RGB images
            cam_images = scene["camera"].data.output["rgb"][..., :3]
            save_images_grid(
                cam_images,
                subtitles=[f"Cam{i}" for i in range(cam_images.shape[0])],
                title="Camera RGB Image",
                filename=os.path.join(output_dir, "cam_rgb", f"{count:04d}.jpg"),
            )


def main():
    """Main function."""

    # note: tile rendered cameras doesn't update the camera poses when using the GPU pipeline and Fabric.
    #   this is a bug which should be fixed in the future releases.
    sim_cfg = sim_utils.SimulationCfg(dt=0.005)
    # check if fabric is enabled
    if args_cli.disable_fabric:
        sim_cfg.use_fabric = False
        sim_cfg.device = "cpu"

    # Initialize the simulation context
    sim = sim_utils.SimulationContext(sim_cfg)
    # Set main camera
    sim.set_camera_view(eye=[3.5, 3.5, 3.5], target=[0.0, 0.0, 0.0])
    # design scene
    scene_cfg = SensorsSceneCfg(num_envs=args_cli.num_envs, env_spacing=2.0)
    scene = InteractiveScene(scene_cfg)
    # Play the simulator
    sim.reset()
    # Now we are ready!
    print("[INFO]: Setup complete...")
    # Run the simulator
    run_simulator(sim, scene)


if __name__ == "__main__":
    # run the main function
    main()
    # close sim app
    simulation_app.close()