コンテンツにスキップ

#201 3Aixs I2C Brick

Overview

Connecting

ShinobiとFabo 3Axisを接続。

必要なソフトウェアコンポーネント

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include <stdio.h>
#include "boards.h"
#include "app_util_platform.h"
#include "app_error.h"
#include "nrf_drv_twi.h"
#include "nrf_delay.h"
#define NRF_LOG_MODULE_NAME "FaBo_210_3Aix"
#include "nrf_log.h"
#include "nrf_log_ctrl.h"

#define TWI_INSTANCE_ID     0
#define ADXL345_SLAVE_ADDRESS 0x53
#define ADXL345_DEVID_REG 0x00
#define ADXL345_DEVICE 0xe5
#define ADXL345_THRESH_TAP_REG 0x1D
#define ADXL345_DUR_REG 0x21
#define ADXL345_LATENT_REG 0x22
#define ADXL345_WINDOW_REG 0x23
#define ADXL345_INT_MAP_REG 0x2F
#define ADXL345_INT_ENABLE_REG 0x2E
#define ADXL345_POWER_CTL_REG 0x2D
#define ADXL345_TAP_STATUS_REG 0x2B
#define ADXL345_TAP_AXES_REG 0x2A
#define ADXL345_INT_SOURCE_REG 0x30
#define ADXL345_DATA_FORMAT_REG 0x31
#define ADXL345_SELF_TEST_ON 0x80
#define ADXL345_SELF_TEST_OFF 0x00
#define ADXL345_SPI_ON 0x40
#define ADXL345_SPI_OFF 0x00
#define ADXL345_INT_INVERT_ON 0x20
#define ADXL345_INT_INVERT_OFF 0x00
#define ADXL345_FULL_RES_ON 0x08
#define ADXL345_FULL_RES_OFF 0x00
#define ADXL345_JUSTIFY_ON 0x04
#define ADXL345_JUSTIFY_OFF 0x00
#define ADXL345_TAP_AXES_Z_ON 0x01
#define ADXL345_TAP_AXES_Y_ON 0x02
#define ADXL345_TAP_AXES_X_ON 0x04
#define ADXL345_INT_SINGLE_TAP 0x40
#define ADXL345_INT_DOUBLE_TAP 0x20

#define ADXL345_RANGE_2G 0x00
#define ADXL345_RANGE_4G 0x01
#define ADXL345_RANGE_8G 0x02
#define ADXL345_RANGE_16G 0x03

#define ADXL345_AUTO_SLEEP_ON 0x10
#define ADXL345_AUTO_SLEEP_OFF 0x00
#define ADXL345_MEASURE_ON 0x08
#define ADXL345_MEASURE_OFF 0x00
#define ADXL345_SLEEP_ON 0x04
#define ADXL345_SLEEP_OFF 0x00

#define ADXL345_WAKEUP_8HZ 0x00
#define ADXL345_WAKEUP_4HZ 0x01
#define ADXL345_WAKEUP_2HZ 0x02
#define ADXL345_WAKEUP_1HZ 0x03

void writeI2c(uint8_t register_addr, uint8_t value);

static volatile bool m_xfer_done = false;
static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID);
static uint8_t m_sample[6];

void read_sensor_data(void);

void configuration(void)
{
    NRF_LOG_INFO("configuration\r\n");
    uint8_t conf = ADXL345_SELF_TEST_OFF;
    conf |= ADXL345_SPI_OFF;
    conf |= ADXL345_INT_INVERT_OFF;
    conf |= ADXL345_FULL_RES_OFF;
    conf |= ADXL345_JUSTIFY_OFF;
    conf |= ADXL345_RANGE_16G;
  writeI2c(ADXL345_DATA_FORMAT_REG, conf);
}

bool searchDevice()
{
    NRF_LOG_INFO("searchDevice\r\n");
  uint8_t device = 0x00;
    writeI2c(ADXL345_DEVID_REG,1);
  //readI2c(ADXL345_DEVID_REG, 1, &device);
  if(device == ADXL345_DEVICE){
    return true;
  } else{
    return false;
  }
}

static void powerOn()
{
    NRF_LOG_INFO("powerOn\r\n");
  uint8_t power = ADXL345_AUTO_SLEEP_OFF;
  power |= ADXL345_MEASURE_ON;
  power |= ADXL345_SLEEP_OFF;
  power |= ADXL345_WAKEUP_8HZ;
  writeI2c(ADXL345_POWER_CTL_REG, power);
}

uint8_t readIntStatus()
{
  uint8_t buff;
  //readI2c(ADXL345_INT_SOURCE_REG, 1, &buff);
  return buff;
}

void enableTap()
{
  writeI2c(ADXL345_THRESH_TAP_REG, 0x32); // 62.5mg/LBS
  writeI2c(ADXL345_DUR_REG, 0x0f); // 1.25ms/LSB
  writeI2c(ADXL345_LATENT_REG, 0x78); // 1.25ms/LSB
  writeI2c(ADXL345_WINDOW_REG, 0xcb); // 1.25ms/LSB
  uint8_t int_tap = ADXL345_INT_SINGLE_TAP | ADXL345_INT_DOUBLE_TAP;
  writeI2c(ADXL345_INT_ENABLE_REG, int_tap);
  writeI2c(ADXL345_TAP_AXES_REG, ADXL345_TAP_AXES_Z_ON);
}

bool isSingleTap(uint8_t value)
{
  if((value & 0x40) == 0x40){
    return true;
  } else {
    return false;
  }
}

bool isDoubleTap(uint8_t value)
{
  if((value & 0x20) == 0x20){
    return true;
  } else {
    return false;
  }
}

__STATIC_INLINE void data_handler(uint8_t *axis_buff)
{
    NRF_LOG_INFO("Device=%x\n\r",axis_buff[0]);
    NRF_LOG_INFO("Device=%x\n\r",axis_buff[1]);
    NRF_LOG_INFO("Device=%x\n\r",axis_buff[2]);
    NRF_LOG_INFO("Device=%x\n\r",axis_buff[3]);
    NRF_LOG_INFO("Device=%x\n\r",axis_buff[4]);
    NRF_LOG_INFO("Device=%x\n\r",axis_buff[5]);

    int16_t x = (((int)axis_buff[0]) << 8) | axis_buff[1];
  int16_t y = (((int)axis_buff[2]) << 8) | axis_buff[3];
    int16_t z = (((int)axis_buff[4]) << 8) | axis_buff[5];

    NRF_LOG_INFO("x= %d y= %d z= %d \r\n",x,y,z);

     if(axis_buff[0] == ADXL345_DEVICE){
    NRF_LOG_INFO("I am ADXL345\n\r");
  }

}


void twi_handler(nrf_drv_twi_evt_t const * p_event, void * p_context)
{
    switch (p_event->type)
    {
        case NRF_DRV_TWI_EVT_DONE:
            if (p_event->xfer_desc.type == NRF_DRV_TWI_XFER_RX)
            {
                data_handler(m_sample);
            }
            m_xfer_done = true;
            break;
        default:
            break;
    }
}

void twi_init (void)
{
    ret_code_t err_code;

    const nrf_drv_twi_config_t twi_lm75b_config = {
       .scl                = ARDUINO_SCL_PIN,
       .sda                = ARDUINO_SDA_PIN,
       .frequency          = NRF_TWI_FREQ_100K,
       .interrupt_priority = APP_IRQ_PRIORITY_HIGH,
       .clear_bus_init     = false
    };

    err_code = nrf_drv_twi_init(&m_twi, &twi_lm75b_config, twi_handler, NULL);
    APP_ERROR_CHECK(err_code);

    nrf_drv_twi_enable(&m_twi);
}

static void read_sensor_data()
{
    m_xfer_done = false;
    ret_code_t err_code = nrf_drv_twi_rx(&m_twi, ADXL345_SLAVE_ADDRESS, m_sample, sizeof(m_sample));
    APP_ERROR_CHECK(err_code);
}

void writeI2c(uint8_t register_addr, uint8_t value)
{
        uint32_t err_code;
    uint8_t reg[2] = {register_addr, value};
    err_code = nrf_drv_twi_tx(&m_twi, ADXL345_SLAVE_ADDRESS, reg, sizeof(reg), false);
    APP_ERROR_CHECK(err_code);
    while (m_xfer_done == false);
}

int main(void)
{
    APP_ERROR_CHECK(NRF_LOG_INIT(NULL));
    NRF_LOG_INFO("FaBo_3AiX_201 Sample\r\n");
    NRF_LOG_FLUSH();
    twi_init();
        searchDevice();
        nrf_delay_ms(10);
        read_sensor_data();
        NRF_LOG_INFO("Init.\r\n");
        nrf_delay_ms(10);
        configuration();
        nrf_delay_ms(10);
        powerOn();
        nrf_delay_ms(10);
    while(1){
        uint8_t reg[2] = {0x32,6};
    nrf_drv_twi_tx(&m_twi, ADXL345_SLAVE_ADDRESS, reg, sizeof(reg), false);
        nrf_delay_ms(10);
        read_sensor_data();
        nrf_delay_ms(1000);
        NRF_LOG_FLUSH();
    }
}

構成Parts

-

GitHub