Skip to content

TPU

Config

1
$ vi object_detection/samples/configs/ssd_mobilenet_v1_0.75_depth_quantized_300x300_pets_sync.config
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# SSD with Mobilenet v1 0.75 depth multiplied feature extractor and focal loss.
# Trained on COCO14, initialized from Imagenet classification checkpoint

# Achieves 17.5 mAP on COCO14 minival dataset. Doubling the number of training
# steps gets to 18.4.

# This config is TPU compatible

model {
  ssd {
    inplace_batchnorm_update: true
    freeze_batchnorm: false
    num_classes: 90
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
        use_matmul_gather: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    encode_background_as_zeros: true
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        class_prediction_bias_init: -4.6
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            random_normal_initializer {
              stddev: 0.01
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.97,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v1'
      min_depth: 16
      depth_multiplier: 0.75
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.97,
          epsilon: 0.001,
        }
      }
      override_base_feature_extractor_hyperparams: true
    }
    loss {
      classification_loss {
        weighted_sigmoid_focal {
          alpha: 0.75,
          gamma: 2.0
        }
      }
      localization_loss {
        weighted_smooth_l1 {
          delta: 1.0
        }
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    normalize_loc_loss_by_codesize: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
  fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
  batch_size: 2048
  sync_replicas: true
  startup_delay_steps: 0
  replicas_to_aggregate: 8
  num_steps: 10000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  optimizer {
    momentum_optimizer: {
      learning_rate: {
        cosine_decay_learning_rate {
          learning_rate_base: 0.9
          total_steps: 10000
          warmup_learning_rate: 0.3
          warmup_steps: 300
        }
      }
      momentum_optimizer_value: 0.9
    }
    use_moving_average: false
  }
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
}

train_input_reader: {
  tf_record_input_reader {
    input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record-00000-of-00100"
  }
  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}

eval_config: {
  metrics_set: "coco_detection_metrics"
  use_moving_averages: false
  num_examples: 8000
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record-00000-of-00010"
  }
  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
  shuffle: false
  num_readers: 1
}

変更点1

1
2
train_config: {
  fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
1
2
3
train_config: {
    fine_tune_checkpoint: "gs://your-bucket/data/model.ckpt"
    fine_tune_checkpoint_type: "detection"

変更点2

1
2
3
4
5
6
train_input_reader: {
  tf_record_input_reader {
    input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record-00000-of-00100"
  }
  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
1
2
3
4
5
6
train_input_reader: {
  tf_record_input_reader {
    input_path: "gs://YOUR_GCS_BUCKET/data/pet_faces_train*"
  }
  label_map_path: "gs://YOUR_GCS_BUCKET/data/pet_label_map.pbtxt"
}

変更点3

1
2
3
4
5
6
7
8
eval_input_reader: {
  tf_record_input_reader {
    input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record-00000-of-00010"
  }
  label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
  shuffle: false
  num_readers: 1
}
1
2
3
4
5
6
7
8
eval_input_reader: {
  tf_record_input_reader {
    input_path: "gs://YOUR_GCS_BUCKET/data/pet_faces_val*"
  }
  label_map_path: "gs://YOUR_GCS_BUCKET/data/pet_label_map.pbtxt"
  shuffle: false
  num_readers: 1
}

ConfigをGCSにアップ

1
$ gsutil cp object_detection/samples/configs/ssd_mobilenet_v1_0.75_depth_quantized_300x300_pets_sync.config gs://${YOUR_GCS_BUCKET}/data/pipeline.config