ServoとAIの連携(分類)
サンプルのコピー
JupyterLabのTerminalを起動し、下記コマンドを使用し、classificationのサンプルをpwmフォルダ以下にコピーします。
cp -r /nvdli-nano/classification/* /nvdli-nano/pwm/
ソースの修正
以下の黄色い領域のコードを追加します。
import torchvision.transforms as transforms
from dataset import ImageClassificationDataset
TASK = 'servo'
# TASK = 'thumbs'
# TASK = 'emotions'
# TASK = 'fingers'
# TASK = 'diy'
CATEGORIES = ['servo_left', 'servo_right']
# CATEGORIES = ['thumbs_up', 'thumbs_down']
# CATEGORIES = ['none', 'happy', 'sad', 'angry']
# CATEGORIES = ['1', '2', '3', '4', '5']
# CATEGORIES = [ 'diy_1', 'diy_2', 'diy_3']
DATASETS = ['A', 'B']
# DATASETS = ['A', 'B', 'C']
TRANSFORMS = transforms.Compose([
transforms.ColorJitter(0.2, 0.2, 0.2, 0.2),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
datasets = {}
for name in DATASETS:
datasets[name] = ImageClassificationDataset('../data/classification/' + TASK + '_' + name, CATEGORIES, TRANSFORMS)
print("{} task with {} categories defined".format(TASK, CATEGORIES))
コードを追加する場所を確認します。
コードを追加する場所を確認します。
以下の黄色い領域のコードを追加します。
import threading
import time
from utils import preprocess
import torch.nn.functional as F
import Fabo_PCA9685
import time
import pkg_resources
import smbus
SMBUS='smbus'
BUSNUM=1
SERVO_HZ=60
INITIAL_VALUE=300
bus = smbus.SMBus(BUSNUM)
PCA9685 = Fabo_PCA9685.PCA9685(bus,INITIAL_VALUE,address=0x40)
PCA9685.set_hz(SERVO_HZ)
state_widget = ipywidgets.ToggleButtons(options=['stop', 'live'], description='state', value='stop')
prediction_widget = ipywidgets.Text(description='prediction')
score_widgets = []
for category in dataset.categories:
score_widget = ipywidgets.FloatSlider(min=0.0, max=1.0, description=category, orientation='vertical')
score_widgets.append(score_widget)
def live(state_widget, model, camera, prediction_widget, score_widget):
global dataset
while state_widget.value == 'live':
image = camera.value
preprocessed = preprocess(image)
output = model(preprocessed)
output = F.softmax(output, dim=1).detach().cpu().numpy().flatten()
category_index = output.argmax()
prediction_widget.value = dataset.categories[category_index]
if category_index == 0:
PCA9685.set_channel_value(0,150)
elif category_index == 1:
PCA9685.set_channel_value(0,650)
for i, score in enumerate(list(output)):
score_widgets[i].value = score